If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+36x+30=0
a = 9; b = 36; c = +30;
Δ = b2-4ac
Δ = 362-4·9·30
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-6\sqrt{6}}{2*9}=\frac{-36-6\sqrt{6}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+6\sqrt{6}}{2*9}=\frac{-36+6\sqrt{6}}{18} $
| -2.97=0.1x-2 | | 35-(6x-4)=3 | | x/5+54=267 | | -8h+19+13h=-15+3h | | 5(3r+2)=29 | | –(2x–8)=20 | | 62=-8x-2 | | 10x+40+60=180 | | 8y-13+49=180 | | 6y+3y+2y=180 | | n/4n+3.1=7.5 | | |3x-1|=17 | | 10x-2=-44 | | 4x-38=32 | | 1/3y-1/3=1/6 | | x/6+4=48 | | 3(3+6n)=81 | | X+15=2x+34 | | 11x-43=16x-19 | | 8y-13+131=180 | | Y+6+3y+2y=180 | | 2n^2-10n-5=-4n | | 7x-3x-x=+13x | | -3(4r8)=-36 | | 2x-5/3+17=10-x | | y-14.50=53 | | -13.9g-18.18=-12.1g | | 4-2(x+3)=0 | | 5/3=24/c | | 15+25=-4+6x | | 0=(2x-9)*(x+5))/(x-4) | | 3=-3y(y-5)-2(y+0.3) |